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Abstract
In studies of the unicellular eukaryote Dictyostelium discoideum, many have anecdotally observed
that cell dilution below a certain ‘threshold density’ causes cells to undergo a period of slow growth
(lag). However, little is documented about the slow growth phase and the reason for different
growth dynamics below and above this threshold density. In this paper, we extend and correct our
earlier work to report an extensive set of experiments, including the use of new cell counting
technology, that set this slow-to-fast growth transition on a much firmer biological basis. We show
that dilution below a certain density (around 104 cells ml−1) causes cells to grow slower on average
and exhibit a large degree of variability: sometimes a sample does not lag at all, while sometimes it
takes many moderate density cell cycle times to recover back to fast growth. We perform
conditioned media experiments to demonstrate that a chemical signal mediates this endogenous
phenomenon. Finally, we argue that while simple models involving fluid transport of signal
molecules or cluster-based signaling explain typical behavior, they do not capture the high degree
of variability between samples but nevertheless favor an intra-cluster mechanism.

1. Introduction

The Allee effect refers to slow or negative pop-
ulation growth rate at low population densities
(‘undercrowding’) [1–3]. The relevance of this effect
is emphasized in the conservation of endangered
species, risk management of invading species that
appear harmless when growing slowly at low densi-
ties [4, 5] and growth kinetics of tumor cells [6, 7].
The fact that it affects sparse populations often makes
it difficult to detect, such as in population studies
of large animals with small sample sizes, or cell cul-
tures where it is difficult to accurately measure very
low cell density. Nevertheless, in his classic example,

W C Allee demonstrated that multiple goldfish can
better alter their environment to the optimal chem-
ical composition than a single fish [1]. He concluded
that more members of the same species may lead to
fitness benefits in communities with low population
density.

Many cellular organisms also exhibit a phase of
slow growth (or ‘lag’) at low cell densities, followed
by a phase of faster exponential growth. Examples of
species showing this phenomenon include Escherichia
coli [8], Tetrahymena thermophila [9], Paramecium
tetraurelia [10], and Dictyostelium discoideum (D. dis-
coideum) [11]. However, the interpretation of these
slow-to-fast growth (i.e. proliferation) transitions is

© 2022 IOP Publishing Ltd
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confounded by other factors such as variable temper-
ature, presence of other species in the growth medium
or dilution from the stationary phase. The traditional
literature regards the lag phase as a period in which
isolated cells are somehow adapting to a new environ-
ment [12], but still begs the question about the mech-
anism. Consequently, it is not clear whether this slow-
to-fast growth rate shift results from an endogenous
density (Allee) effect. In our effort we are inspired by
the understanding of the Allee effect due to the coop-
erative extracellular digestion of sucrose in budding
yeast [13].

For D. discoideum, the focus of this study,
common laboratory guidelines specifically empha-
size the role of density for suspension cell culture
growth, pointing out that growth at densities above
≈104 cells ml−1 ensures the absence of the slow lag
phase [14]. Meanwhile, at lower densities, the culture
‘might go through a lag phase’ [14]. We previously
argued that this is indeed a purely density (Allee)
effect, and hypothesized that it could arise from a
contact-mediated (juxtacrine) signaling mechanism
in a well-mixed shaken cell culture [15].

Here, we first extensively characterize the slow-to-
fast transition in D. discoideum amoebae and experi-
mentally test the contact-mediated signaling hypoth-
esis. We present evidence for an Allee effect in D.
discoideum based on a large set of well-controlled
experiments and demonstrate large variation in the
length of the lag phase. To achieve much more accu-
rate measurements, we developed a novel experi-
mental method for automated cell counting at high
temporal resolution (every 10 min) and at very low
densities in suspension cultures, orders of magnitude
below the turbidity detection limits of spectropho-
tometers or plate readers. We tested our contact-
mediated signaling hypothesis using variable stir rate
experiments and show that its predictions do not
qualitatively agree with the observations.

Instead, through conditioned media experiments,
we demonstrate that chemical signals mediate
the slow-to-fast transitions. Finally, we show that
a simple chemical signaling model successfully
describes the typical behavior within an ensemble of
samples, but that the variability observed across
samples favors a signaling within cell clusters (i.e.
paracrine) explanation.

2. Results

2.1. Allee effect shown through population
growth measurements
Our first approach to better quantifying the slow-to-
fast growth transition in a D. discoideum culture is
to measure the mean cell density at different times.
We sampled cell cultures and counted cells (typically
∼50, leading to 15% sampling uncertainty) in a
well-defined volume using a hemocytometer; see

section 4.3. We used this method to measure the
growth curves (cell density vs time) for samples of
the common axenic (i.e. food not provided in the
form of another organism, rather as lifeless media)
strain AX4. For this experiment, the cells were grown
in liquid volumes of 25 ml in shaker culture bot-
tles in the fast growing exponential phase (above
104 cells ml−1), and then inoculated at the initial den-
sity of 102 cells ml−1 into fresh culture bottles of
equal volume. Figure 1(a) shows the growth kinet-
ics of these runs with the initial data point set to the
inoculation density. All the other points have error
bars that reflect counting statistics. They are always
insignificant in these plots. As we will argue this
reveals the slow-to-fast growth transition at a cell den-
sity of about 104 cells ml−1, about 100 h after inoc-
ulation. Typical doubling times obtained by linear
regression of log density vs time curves is 18 h for the
lag (slow growing) and 11 h for the log (fast growing)
phases.

Second, we investigated whether the inocula-
tion density affects the duration of the lag phase.
Here, using the same method, we measured the
growth curves again for AX4. We ran samples
asynchronously and aligned by time translation
the growth curves in the fast growing exponential
range (from 1 × 104 to 5 × 106 cells ml−1) as shown
figure 1(b). While the counting uncertainty again
produces barely visible fluctuations in the courses
of the proliferation time series, these results show a
considerable variation in growth kinetics, from one
lagless sample to samples that lag all the way to high
densities. Importantly, the starting density which
covered a range from 360 to 720 cells ml−1 (augment-
ing the work of figure 1(a) which began with 100
cells ml−1) did not affect the slow-to-fast transition
which typically occurred at about 104 cells ml−1

[see supplemental information (SI) section 1
(https://stacks.iop.org/PB/19/026002/mmedia) for
additional examples using different inoculant source
densities and a second axenic strain]. In table 1
we display and compare for both experiments
(figures 1(a) and (b)) R, the ratio of the semilog plot
slopes in the log regime over that in the potentially
lagging regime (fit details are given in the figure
caption). Taking into account statistical counting
uncertainty, table 1 shows the same significant run
to run variation while confirming the slow to fast
transition with time. In figure 1(c) we show that the
growth rate γ ≡

(
1
n

)
dn
dt decreases with decreasing

cell density n, confirming that we are witnessing an
Allee effect at low cell densities. See figure legend
for details in all the density regimes. In contrast to
the original time series figures 1(a) and (b), here the
statistical uncertainty of the numerical differentiation
produced considerable uncertainty. Nevertheless,
the theme of the persistence of the Allee effect with
considerable variation beyond counting statistics is
reinforced.
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Figure 1. D. discoideum proliferation kinetics reveals the Allee effect with considerable variation. In all cases for AX4 (an axenic
strain) (a) population growth curves for each of six simultaneously grown samples. Statistical uncertainties due to counting
provide insignificant error bars on these plots. On average we see three phases of cell proliferation: lag phase until about 125 h,
exponential (‘log’) phase until about 230 h and a stationary phase beyond that. Note the variation in time to reach a density of 106

cells ml−1 is roughly 60 h. More detailed evidence for a slow to fast transition given through fits to slopes used in table 1 to
generate the fast to slow slope ratio (R). (b) Growth curves for various starting densities (seven) runs conducted independently,
time shifted to align the log phase. As in (a) this shows a large variation in the slow-to-fast growth transition, from highly lagging
(the left-most sample; red) to almost lag-less behavior (right-most sample; orange). Statistical errors are again insignificant. Slope
ratios given in table 1. A range of about a factor of two in starting density was employed. (c) Growth rate as a function of cell
density, obtained from the samples in (a) and (b). Note the stationary phase behavior at highest densities and a sudden rise at the
very lowest density (more clearly seen in (f)). In aggregate we confirm the appearance of an Allee effect (rise in rate with density)
and importantly considerable variation. Circles indicate (a) runs and squares indicate (b) runs. (d) Graphical explanation for
turbidity point methodology (see sections 4.4 and 4.6) for quantifying lag time from a single measurement. (e) Results with high
statistics using this approach confirming the presence of lagging and the variation of lagging time. (f) High statistics population
growth curves for 11 samples sampled at 10 min time intervals, obtained using our OCPC apparatus (section 4.5, figure 8). As
discussed in text, the system provides linear response between 100 and 3.2 ×104 cells ml−1 (somewhat above 105 cells ml−1 we see
an apparent drop-off in counting efficiency). As in (a), runs began with 102 cells ml−1 density. Except in one case (the topmost
curve), as in (a), (b) and (e), we have strong evidence of a slow to fast proliferation transition. Again, the transitions vary
significantly in the time of the crossover. This agreement is reflected in the slope ratios of table 1. Further quantitative analysis is
given in figure 2. See text for additional details.

Next, to better quantify this large variation in
the lag times, the main observation we focus on
in this paper, in our turbidity endpoint technique
(section 4.4), we economically performed another
type of experiment with 90 smaller samples grown in
parallel (0.6 ml each; all with the same initial den-
sity of 100 cells ml−1). For this larger number of
samples, the cell density was measured only once at
high density, between 105 and 106 cells ml−1, using a
turbidity measurement to flag specimens for manual
counting. In parallel, control samples inoculated at
5× 104 cells ml−1 were used to establish the exponen-
tial phase doubling time. By extrapolating back each
exponential growth curve in time, we define the lag
time as the time when this extrapolated line crosses
the initial density of 100 cells ml−1 (figure 1(d)). The
measured lag times are presented in figure 1(e). The
largest lag times correspond to samples growing in the
lag phase with 19 h doubling times up to high densi-
ties (e.g., as in the leftmost red sample in figure 1(b)).
Small negative lag times are obtained from samples
growing slightly faster than controls. We find an aver-

age lag time of 29 h with a standard deviation of
26 h and a broad distribution of at least 60 h. Look-
ing back at the shaker bottle results (figures 1(a) and
(b)) we also see a variation in the lag times of at least
60 h.

Finally, to quantify the Allee effect more precisely
at a higher temporal resolution and enjoy a tremen-
dous reduction in statistical uncertainty over our
previous methods we developed an optical cell pas-
sage counting (OCPC) assay. In this device (figure 8,
section 4.5) a single, continuously stirred, cell culture
is positioned in the path of a green laser beam, with
a small illumination volume provided by a low power
objective lens. The resulting bright images of cells are
relayed through a camera lens and onto a sufficiently
fast one-pixel light detector. Each individual cell pass-
ing through this volume yields a single light pulse, and
the number of pulses is counted in post processing
during a fixed amount of time of 10 min. We devel-
oped the technique with micron sized colloidal parti-
cles, validated the linear response of the system over
a wide range of cell densities, and provided an abso-
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Table 1. R, ratio of fast to slow regime slopes in figures 1(a), (b), and (f) indicating sizable variation and
persistent evidence of a slow to fast transition. For 1(a) and 1(b), the slopes were extracted by weighted (by
statistical uncertainties) least squares fit in two regimes: density below 5 × 103 cells ml−1 for potential lagging
regime (for 1(a) the point at time zero was removed because of the suspected departure from simple
exponential growth in the lag phase indicated in figure 1(f)) and above 5 × 104 for the log regime. Data for
density beyond 1 × 107 were not fit as this indicate the stationary phase. For the fits to 1(a) and 1(b) the
standard deviations in R are given as the uncertainties. For the 1(f) data, by contrast, statistical uncertainties
were ignored since they are so small, fits were performed to a pair of straight lines (as indicated in figure 2). See
text for more details. In all observations, considerable variation in the transition is shown.

Data set 1(a) 1(b) 1(f)

R values (uncertainties) for each time series 3.0 (0.3) 3.0 (0.4) 1.35 (0.04)
4.4 (0.7) 1.11 (0.15) 1.84 (0.08)
2.5 (0.4) 2.7 (1.5) 2.179 (0.015)
2.3 (0.4) 1.6 (0.5) No fit
3.1 (0.3) 1.7 (0.3) 1.90 (0.03)
3.7 (0.7) 1.67 (0.12) 1.19 (0.06)

1.68 (0.14) 1.42 (0.04)
1.32 (0.05)
1.45 (0.09)
1.74 (0.05)
1.24 (0.08)

lute calibration. Key to employing this technique was
filtering the culture media and performing cell-free
medium background measurements. We ran the same
experiment 11 times, with AX4 strain cultures starting
at 100 cells ml−1. This provided the proliferation time
series shown in figure 1(f). We note the expected loss
of detection efficiency for cell densities beyond 1 ×
105 cells ml−1 due to pulse pileup. We see strong qual-
itative confirmation of our earlier Allee effect obser-
vations including variation in lag time: a slow to fast
transition cell density of about 6000 cells ml−1, and
lag times that covered a range of at least 33 h. In order
to bring to bear quantitative statistical uncertainty, we
used a different analysis approach than we employed
for our shaker culture runs (figures 1(a)–(c)). Since
the counting uncertainty is now negligible as shown
in the close-up of the putative transition regime in
figure 2(a) we checked with linear regression for a lin-
ear behavior with a break at a slow–fast transition
which the fits delivered as illustrated for a few runs
in figure 2(b). Our approach [16] was to maximize
the goodness of fit in order to allow the data itself
to reveal whether there is a slow to fast transition.
As shown in figures 1(f) and 2, this occurred in all
but one run. These fits provided changes in slope at
the transition as shown in figure 2(c) with increases
established within 95% confidence limits. We see that
for 10 of the 11 runs the Allee effect is confirmed. In
table 1 we show the corresponding R for comparison
with the manual shaker culture observation. Through
both figure 2 and table 1, we see the earlier pattern
of considerable variability in the nature of the Allee
effect. At the same time, we discover a new kinetic fea-
ture. Figure 1(f) shows an apparent rapid increase in
count density at the start of each run. Finally, it is a
truly remarkable qualitative result that in contrast to
the excess and nonstatistical fluctuations we observe

in the shaker culture manual counting experiments
for individual proliferation time series, the great sta-
tistical precision afforded by the OCPC assay offers a
way to identify the slow–fast transition from run to
run not as a broadly defined crossover, but rather as
an apparently sharp transition in time.

2.2. Variable stirring rates experiment rules out
juxtacrine signaling hypothesis
In earlier work [15], it was argued that cell–cell col-
lisions could have triggered the slow-to-fast transi-
tion. This paper developed a contact-mediated (jux-
tacrine) signaling model where cells divide only after
undergoing a critical number of collisions NC, dur-
ing a time Tm. This was inspired by apparent evidence
that a chemical signal that could be transported by
diffusion or fluid flow, i.e. endocrine signaling, was
not part of the mechanism behind the transition. A
good fit to the data available at the time was pro-
vided. Here, we tested the validity of this model by
measuring lag times while varying the cell–cell col-
lision rate. We used our turbidity point experiment
(see section 4.4), where multiple-vial containers were
rotated at different rates (see section 4.6, figure 7).

We used a 32 rpm stir rate experiment to esti-
mate the best-fit values for model parameters as fol-
lows: Tm = 370 min and NC = 1. The model predicts
vastly different lag times for 16 and 64 rpm stir rates,
while as shown in figure 3 we observed no change in
lag times. In an effort to adapt the model, we found
that changing the critical number of collisions NC to
higher values could helpfully extend the predicted lag
phase. However, achieving a fit between the experi-
ment and model for larger NC would require a bio-
logically implausible measurement time Tm, namely
larger than the cell doubling time (9–12 h). We con-
cluded that the contact signaling model is not valid.
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Figure 2. Analysis of OCPC counting observations. (a) Closeup of data in figure 1(f). (b) Detection of transition as changes in
slope. (c) 95% confidence intervals for slope increase (with increasing time) across transitions for each run, following the color
codes in (a). Note that the analysis of Run 4 (yellow) failed to detect a transition. See text for more details. These fits support our
claim that the slow to fast transition persists in the main, but with statistically significant run to run variability.

Figure 3. Variable shear rate experiments demonstrating the failure (the predicted stir rate dependence is not observed) of the
juxtacrine signaling model by comparing theory and experiment for (a) cell density vs time and (b) lag time.

2.3. Conditioned media effect found but required
surprisingly high concentration
Confronted with the failure of the cell colli-
sion model, we returned to the notion that cells
communicate by means of endocrine signaling.
The hypothesis is that cells secrete chemical signals
that quickly disperse in a well-mixed suspension
and, after reaching a critical concentration, prompt
cells to switch to faster growth. To test this pos-
sibility, we grew cells in a medium taken from
exponentially growing cells [conditioned medium
(CM)] and looked for a reduction in the lag time.
Previously [15], we did not observe a statistically
significant CM effect. In that work we used a small
sample number (four) and with only 50% CM
diluted in 50% fresh medium. See section 5 of
the SI for more details. Having already shown a
substantial variation in the population dynamics

at these low densities, we now performed a com-
prehensive series of CM experiments, with 231
samples run in parallel, using our turbidity end-
point measurement setup (see sections 4.4 and 4.7).
This experiment was used to measure lag times for
each sample, under a variety of conditions.

We split these samples into three sets, each
corresponding to a sub-experiment where we
tested the effect of CM prepared from cells at
0.2 × 104 cells ml−1 (59 samples), 30 × 104 cells ml−1

(120 samples) and 50 × 104 cells ml−1 (52 samples),
slightly below and above the observed transition
density. Conditioning details are given in section 4.7.
In each set, we diluted a fraction of CM with our
standard growth medium (HL5) into 0% CM (full
fresh growth medium), 0.1% CM, 5% CM, and
100% (full CM) fractions. Each sample started with
500 cells ml−1 and for each of the three sets and
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each of the four CM proportions, we also grew two
samples started at 5 × 104 cells ml−1 that were used
to estimate the fast phase proliferation growth rate.
Figure 4 shows the lag time distribution with the
CM obtained from specific cell density (column) and
diluted by a certain fraction (row).

We observed a statistically significant reduction in
the mean lag time between 0% and 100% CM for the
3× 105 cells ml−1 CM and 5× 105 cells ml−1 CM with
p-values 2.2× 10−16 and 5× 10−3, respectively (using
the Welch two sample t-test; see SI section 8). In
addition, we observe progressive reduction in the lag
time distribution as the fraction of CM is increased,
although we still observe large variation and an occa-
sional big outlier. This conclusively demonstrates that
the slow-to-fast growth transition arises from a chem-
ical signal.

Assuming that the putative proliferation factor
sustains fast proliferation over the entire density range
of the exponential phase, we are surprised that we
detected a significant conditioned media effect only
for the very highest concentration of conditioned
media.

2.4. The variation in the Allee effects is intrinsic
As discussed in sections 1 through 4 of the SI we tested
for the importance of different strains and the inocu-
lant source density (which might indicate the impor-
tance of previously established proliferation suppres-
sion factor), searched for a lagless strain, adapted
our cell culture techniques, and tested for possi-
ble bacterial contamination. In none of these tests
could we find a factor that systematically affected the
Allee effect. Our careful cell culture procedures have
ruled out the possibility of new lagging/non lagging
phenotypes evolving from successive cell culture pro-
gressions. We therefore concluded that the observed
Allee effect variation is an endogenous behavior. We
therefore sought an explanation for the run to run
fluctuations in the proliferation kinetics.

2.5. Mechanisms for variation of the cell
proliferation kinetics and the Allee effect without
invoking intercellular interactions ruled out
In sections 6 and 7 of the SI, we respectively elim-
inate the possibilities that the natural variations in
the cell cycle and fluctuations in the initial inocu-
lation of samples are responsible for the observed
variation in growth proliferation time series. In
neither case do these approaches offer an expla-
nation for the observed Allee effect. We therefore
turn to models besides our now-discarded juxtacrine
signaling approach that include intercellular interac-
tions to understand the observed Allee effect and its
variation.

2.6. Endocrine and cluster-based models can
explain the average lagging behavior but differ on
the degree of variation of lag time
Endocrine model. Given our observation that con-
ditioned media affects the distribution of lag times,
we first provide a simple endocrine signaling model.
We model cells as growing at a rate γslow until a criti-
cal number of signaling receptors Rc (out of RT total
receptors) are occupied on each cell, at which point
each cell irreversibly switches to a fast proliferation
growth rate γfast (figure 5(a)). Both cell types produce
a growth factor c at a rate υ per cell. The dynamical
equations for the densities of slow-growing cells ns,
fast-growing cells nf and growth factor concentration
c are (ignoring the stationary phase):

dns

dt
= γsns − Ws→fns (1)

dnf

dt
= γfnf + Ws→fns (2)

dc

dt
= υ (ns + nf) . (3)

In the above, Ws→f is the rate of conversion from
slow to fast growth per cell. Ws→f is given by the
product of the characteristic transition rate 1/τ and
the fraction of slow growing cells that have Rc or
more occupied receptors, which follows a binomial
distribution:

Ws→f =
1

τ

RT∑
R=Rc

(
RT

R

)[
c(t)

c (t) + KD

]R[ KD

c (t) + KD

]RT−R

,

where c(t)
c(t)+KD

is the probability of a single recep-
tor being occupied in chemical equilibrium with the
external signal at concentration c(t) and having a dis-
sociation constant KD. We take RT = 10 000 receptors
per cell from reference [17] page 30 and estimate that
Rc = RT/2. Rough estimates (see SI section 9) show υ
is typically in the range 400–9000 molecules/(cell s).
Since only the total cell number density was mea-
sured here (ns + nf ), the results of this model depend
on υ and KD through the combination υ/KD.
For the range of dissociation constants for growth
factors 0.08 pM � KD � 20 nM, typically around
0.5 nM [17], the value for υ that fits the data is
450 molecules/(cell s), consistent with biologically
meaningful estimates. Changing the conversion time
τ does not affect the model fit (up to 25 h), but
only changes the time scale at which fast growing
cells take over the population, making the transi-
tion smoother. In summary, an endocrine signaling
model can describe the typical [18] time series behav-
ior of the slow-to-fast growth transition as shown in
figure 5(b).

Let us now consider the expected variation in the
cell density growth curves due to chemical binding
fluctuations in the signaling event in this mechanism.
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Figure 4. Conditioned media experiment. Each row corresponds to CM fraction (from 0% CM, i.e., 100% fresh culture medium,
to 100% CM), while each column corresponds to a set of experiments where CM was obtained from cells from the exponential
phase as given at the top of the column.

Figure 5. Endocrine signaling model. (a) Schematic of the endocrine signaling model. (b) Model results for switching rate
τ = 1 h, growth factor secretion rate υ = 450 molecules/(cell s), and dissociation constant KD = 0.5 nM.

From reference [17], p 141, the variation in the proba-

bility of occupancy of a receptor (θ) is given as follows:

σ2
θ =

cKD
RT(KD+c)2 .

While the average value of θ is given by: c
KD+c .

How do these fluctuations affect the value of c at

the transition, cx = KD?

By differentiation of the above we discover:

σcx =
2KD

R
1/2
T

.

This in turn provides (see SI section 9) the fluc-

tuation in the expected crossover cell density through

the relation: cx =
υ

γslow
nx.

This gives us: σnx
nx

= 2

R
1/2
T

.
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From reference [17], p 30 we have RT = 900 to
7× 105 receptors/cell (typically 3× 104 for epidermal
growth factor). We therefore conclude that σnx

nx
=

0.066 to 0.0024 (typically 0.012).
Turning to the observed variation in the lag time

which we conservatively estimate is at least 10–15 h,
(a limit considerably smaller than the observed range)
using γslow = 0.038 h−1 by fitting the typical lag phase
in figure 1(a), that implies an observed range of: σnx

nx
of

at least 0.4 to 0.6. This is considerably greater than the
theoretical estimate given above. Relaxing the require-
ment that cx = KD means that: cx

KD
< 6.9 × 10−3

or >145. Either option seems implausible given that
we expect cx ≈ KD. We do note however that in ear-
lier work on folic axis chemotaxis [19], we observe
that response can occur even at c

KD
≈ 100. We con-

clude that the variation in proliferation time series
that we notice is unexplained by this simple endocrine
model.

Cluster sourced endocrine model. Here, build-
ing upon observations of cell aggregation in suspen-
sions [15, 20] we analyze possible growth signaling
models based on cell clusters. In contrast to the pre-
vious model which could be solved analytically, here
we need to perform simulations. We assume that the
cells cluster with a rate α, that cells in clusters have a
characteristic lifetime τ to remain in a cluster, and that
only the cells in clusters produce proliferation growth
factors with a rate ν per cell. The equations describing
the population dynamics in this model are as follows.
Here, n is the density of single cells, nc is the over-
all density of cells that belong to clusters, and c is the
concentration of growth factor:

dn

dt
= −α (n + nc) n︸ ︷︷ ︸

clustering

+
nc

τ︸︷︷︸
cluster decay

+ γ (c) n︸ ︷︷ ︸
cell proliferation

dnc

dt
= α (n + nc) n − nc

τ
+ γ (c) nc

dc

dt
= νnc.

The growth rate is given empirically, assuming a
switch-like cell behavior:

γ (c) = γslow if c < cx

= γfast if c > cx,

where γslow and γ fast are estimated by fitting the typi-
cal low and high-density slopes of figure 1(a) respec-
tively (see SI section 9 for our estimation of cx).
One can interpret the clustering term as the colli-
sion rate of single cells with each other ∼ αn2 and
the collision rate of isolated cells with clustered cells
∼ αnnc. We express the entire model schematically in
figure 6(a).

We estimated the clustering rate coefficient α

according to the shear-induced flocculation theory of
Probstein [21]. We took the cells in suspension to be
spheres of 5 micron radii and applied the theory to

our turbidity point studies by estimating the shear
rate as 2πf where f, the vial rotation rate, was taken
as 16 rpm. This yielded α = 10−9 s−1. To estimate
the cluster decay rate (1/τ) we turned to observa-
tions of clusters on glass substrates (see section 4.8).
Since we could not monitor these clusters in suspen-
sion, we observed the fusion of cells and cell-clusters
on substrates and noted their subsequent partial or
total breakups. Averaging the time intervals between
cluster formations and breakups provided an average
cluster lifetime result of τ = 30 min. We found that
we could fit typical [18] observations of figure 1(a)
with growth rates corresponding to doubling times
in the lag and log phase of 18.3 and 11.3 h, respec-
tively, if we set the growth factor secretion rate at
ν = 2000 molecules/(cell s). This lies well within
the estimated range of 400–9000 molecules/(cell s)
detailed in SI section 9. Using these parameters,
we ran Gillespie simulations in MATLAB® (see SI
section 10) to predict the stochastic behavior of the
cluster-sourced endocrine mechanism in our turbid-
ity point experiment at 16 rpm. Figures 6(b) and
(c) show, respectively, the average simulated behav-
ior and the result of a single simulation. While the
average results are in good agreement with our obser-
vations the resulting variation in lag time of 1 h
(as shown in figure 6(d)) is much smaller than that
we observed in either the daily cell-counting or tur-
bidity point experiments (shown in figures 1(a), (b)
and (e) respectively).

Paracrine model. Finally, we also considered a
paracrine signaling, i.e. secretion and detection of
a chemical signal between neighboring cells, model
(given schematically in figure 6(e) and detailed in SI
section 10) where single cells proliferate at a slow rate
γslow and clustered cells grow at a fast rate γfast, while
the clustering dynamics remain unchanged from the
previous model:

dn

dt
= −α (n + nc) n︸ ︷︷ ︸

clustering

+
nc

τ︸︷︷︸
cluster decay

+ γslown︸ ︷︷ ︸
cell proliferation

dnc

dt
= α (n + nc) n − nc

τ
+ γfastnc.

We estimated the cell-clustering rate α from the
shear induced collision rate (α = 10−9 s−1 as before).
The number of clusters nc and the cluster decay time
τ were estimated based on surface growth measure-
ments as before (τ = 30 min). We found, again, that
we could fit typical [18] experimental observations
from figure 1(a) with growth rates corresponding to
doubling times in the lag and log phase of 18.3 and
11.3 h, respectively, with a factor secretion rate at
ν = 2000 molecules/(cell s). Again, running Gillespie
simulations in MATLAB® (see SI section 10) of the
paracrine mechanism, assuming our turbidity point
setup at 16 rpm, as before, we obtained figures 6(f)
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Figure 6. Analysis and simulations of cluster-generated endocrine and paracrine signaling models. For the cluster-sourced
endocrine model: (a) model functionality schematic, (b) simulation results: mean densities over time, (c) an example of a single
stochastic simulated model, (d) the simulated resulting spread in lag times arising from the finite number of cells and clusters. For
the paracrine model: (e) model functionality schematic, (f) simulation results: mean densities over time, (g) an example of a
single stochastic simulated model, (h) the simulated resulting spread in lag times arising from the finite number of cells and
clusters. We conclude while the two approaches can model the typical slow fast transition behavior, the paracrine model provides
a considerably closer agreement with the measured lag time variation.

and (g). These show, respectively, the average sim-
ulated behavior and the result of a single simula-
tion run. The lag time histogram from multiple runs
(shown in figure 6(h)) shows a lag time variation of
4 h, significantly smaller than observed but closer to
observations than the other models.

Model comparison. A non-cluster-based endo-
crine signaling approach yields a much lower than
observed value for the variation in the lag time.
The stochastic Gillespie simulations we performed
for both cluster-sourced endocrine signaling and the
paracrine signaling give lag time variation of 1 and 4 h,
respectively. While cluster-sourced endocrine and the
paracrine mechanisms yield estimated lag time varia-
tions far lower than those we observed in our exper-
iments, the paracrine signaling approach is decidedly
closer to what we observe.

3. Discussion and conclusion

We studied a density-dependent proliferation transi-
tion in D. discoideum amoeba. Whereas many [22]
have investigated the starvation response aggrega-
tion of D. discoideum at much higher cell densities
(∼106 cells ml−1), we focused our attention on a low-
density example of the Allee effect displayed by many
other single-cellular, plant, and animal species.

We previously offered a collective explanation for
a slow-to-fast growth transition based on cells sens-
ing each other’s presence through collisions (jux-
tacrine signaling) [15]. In this current work we apply
the observation of clustering on a substrate to the

problem of clustering in a suspension. This qualita-
tively agrees with other studies of cell–cell adhesion in
suspension [20]. Here, through a much more exten-
sive set of experiments than in that earlier work, we
rule out the juxtacrine signaling hypothesis and argue
that either (i) a cluster-sourced endocrine signaling
mechanism serves as a cell density signal through
the production and transport of soluble prolifera-
tion factors or (ii) more likely communication hap-
pens through a paracrine signaling mechanism, where
neighboring cells in one cluster exchange growth
factors.

The positive result of our conditioned media
experiment confirms that a chemical signal medi-
ates these mechanisms. We also show that significant
variations in the growth rates at densities below 105

cells ml−1 are characteristic of this system and not
artifacts of low density cell cultures, e.g., the effects
of contamination by a rival organism. Uncertainties
in inoculation densities, variations due to different
positions in the cell cycle, and fluctuations in recep-
tor–ligand binding, do not explain the observed time-
variation around the density threshold among dif-
ferent samples. An explanation of the precise varia-
tion we observe requires further work, but stochas-
tic simulations demonstrate that of the models we
have explored most closely matches that arising from
a paracrine signaling model. As an alternative to the
generation and distribution of proliferation factors
hypothesis mechanism for the Allee effect we are dis-
cussing here, Nathalie Balaban [23] has suggested that
we might be observing a collective detoxification of
the culture medium.
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Looking carefully at the OCPC system result of
figure 1(f), we note an initial, sudden rise in apparent
cell density. It occurs to us that this might reveal the
breakup of cell clusters when the bulk log phase source
employed is introduced into a dramatically diluted
environment. It would be valuable to monitor the size
of particles counted, at the very least for this reason
but even more importantly as a means of providing
a deeper test of the cluster-based models introduced.
Additionally, as shown in figure 2, in contrast to the
manual counting experiments of figures 1(a) and (b),
this same assay opens the door to providing a sharp
determination of the point of transition between
slow and fast proliferation, a feature to be monitored
for evidence of the sources of variation in the Allee
effect.

From the perspective of evolutionary biology, an
Allee effect might benefit D. discoideum cell colonies.
The presence of other cells in the environment could
indicate abundant nearby nutrients, as the cell den-
sity at this point (104 cells ml−1) falls under the
levels where cells compete for resources and pro-
ceed to the stationary phase (∼7 × 106 cells ml−1).
One could investigate this further by coupling our
understanding of this effect with current models of
biological behavior centered around concepts in game
theory [24]. The cellular Allee effect could possi-
bly arise from a set of well-defined initial condi-
tions paired with common strategies across cells in
response to an extensive payoff matrix. The con-
struction of such a model would allow more con-
crete insights into the mechanisms underlying the
Allee effect in different natural environments. This
would allow researchers to more accurately predict
cell growth kinetics given sets of conditions pertain-
ing to specific environments (e.g., early-stage tumor
growth in various parts of the human body).

Future work on this investigation can branch into
several directions. To begin with, there exists a pos-
sibility that memory effects in the slow-to-fast tran-
sition allow each state to persist through generations
(e.g., a phenotypic switch). This hypothesis would
suggest that an epigenetic mechanism could lead to
the wide variation in transition times by leaving cells
in one (slow growth) state or the other (fast growth).
One could run experiments to attempt to select for
fast (or slow) growing cells by repeatedly selecting for
the fastest (or slowest) growing samples and cultur-
ing them through several generations. Also, we have
not yet ruled out the possibility of isolating a com-
pletely lagging (consistently slow growing) or a lagless
(consistently fast growing) strain. Future work in this
regard could be enabled by growing monoclonal D.
discoideum colonies in a batch. This effort could also
help estimate the effect of subtle genetic diversity on
the observed variation in lag times. Also, we could
make more direct observations by studying the slow-
to-fast transition on a substrate in two dimensions.
Thus far, indications [15, 25] are that cells in such a

system do not lag, but more extensive work is war-
ranted especially with hydrophobic substates that foil
cell adhesion. For example, if the slow growing cells
got stuck in a particular phase of the cell cycle, a
D. discoideum strain with a green fluorescent pro-
tein (GFP) marker for that phase [26] could indi-
cate the doubling time for individual cells. In addi-
tion, one could easily observe and quantify any pos-
sible correlation between the doubling time and the
local cell surface density. Also, Bastounis et al [27]
demonstrated the critical role that the manner of
shaking plays in cell division, specifically that non-
inertial flow in non-orbital shakers suppresses cytoki-
nesis. Despite our demonstration that proliferation
as a function of shear rate does not follow our col-
lision theory for intercellular signaling, subtler vari-
able degrees of mixing preparations may lead to new
conclusions. We could further alter the degree of coa-
lescence between cells using tools such as ultrasonic
agitation and the infusion of the chemical suppres-
sor of cell–cell adhesion in D. discoideum, ethylenedi-
aminetetraacetic acid (EDTA) [20]. Considering the
comments of Robert Insall [24], the exploration of
other strains can further our understanding of pro-
liferation control mechanisms present in genuinely
wild type D. discoideum that the axenic strains AX3/4
lack. Thus, one can look forward to the exploration
of non-axenic suspension growth strains, where both
the density of D. discoideum cells and that of a bac-
terial food source are important. Finally, regarding
our modelling, in particular for cluster-based mecha-
nisms for proliferation, we can look forward to going
beyond the zero spatial dimensional approach used
here to include full three dimensional simulations.

4. Materials and methods

4.1. Use of biological vs technical replicates
In all measurements except for our automated contin-
uous counting assay, our experiments were performed
with biological replicates [28] since the essence of our
work is that we observe sample to sample variation
in our time series. For the automated experiment,
the sampling of a given run is rapidly repeated on
the time scales shorter than the characteristic times
associated with the time evolving features which we
observe. Thus while the experiment was performed
as all others with biological replicates (eleven in this
case), the measurements were technically repeated on
short time scale in order to achieve high statistical
precision.

4.2. Cell culturing and inoculation
Cell culturing followed a standard shaker protocol
[14] with the addition of penicillin and strepto-
mycin (PenStrep; Invitrogen) antibiotics. We define
a unit PenStrep dose as one of 25 μg ml−1 (we
thank Petra Fey of Northwestern University’s Dicty
Stock Center for this suggestion). We define a
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unit tetracycline dose as one of 30 μg ml−1, as
used previously in D. discoideum as an expres-
sion system (as noted by Petra Fey [23]). Closed
100 ml Erlenmeyer flasks containing 25 ml of HL5
culture media [14] treated with 2500 units of peni-
cillin and 2.5 mg of streptomycin (250 μl per
25 ml bottle) were shaken constantly at 150 rpm on
an orbital shaker after inoculation from exponentially
growing cultures.

4.3. Daily visual cell counting method
We first measured cell densities by visually count-
ing cells in cultures at daily intervals using a
hemocytometer—Model 4000 Nageotte Count-
ing Chamber (Hausser Scientific, Horsham, PA).
This allowed for precise measurements down to
100 cells ml−1. In comparison with cell-free contain-
ers of culture media, the false-positive background
density corresponded to typically 60 but up to 180
cells ml−1, presumably because of visual misidentifi-
cation of particles in the media as cells. The statistical
counting uncertainties for these experiments (e.g. SI
figures S1(a) and (b)) were typically 40% at 100 cells
ml−1 and 22% at 1000 cells ml−1 and higher densities.
For figures 1(a)–(c) the counting uncertainties were
precisely determined from the raw data.

4.4. Turbidity point measurement method
While individual-culture measurement methods like
the one described above allow us to measure individ-
ual growth curves, culturing many samples and mea-
suring them daily requires a considerable amount of
time which limits the sample size. In an alternative
setup, we employed many small (1.8 ml) vials each
containing 0.6 ml of cell suspension in rotating drums
(see figure 7). Each day, we simultaneously measured
the turbidity of each vial to determine when the cell
density had reached approximately 106 cells ml−1.
Once the samples became turbid, we measured
the cell density precisely using the hemocytometer
described in the previous method.

The rotating drum was mounted on a step-
ping motor shaft. We operated the motor at speeds
between a specific range to minimize vibrations since
we were interested in performing controlled shear
rate experiments (see section 4.6). Running the step-
per motor at too low a rate (∼few rpm) would pro-
duce a stepping motion that, in turn, would cause
the flow within vials to become jerkily inertial and
not viscosity dominated. Running the motor too fast,
on the other hand, could introduce mechanical res-
onances and, again, produce vibrations leading to
inertial mixing.

We checked the turbidity of each vial in our drum
mixers using a system consisting of a red laser diode
and a phototransistor monitor in line with the laser
beam (forward scattering). We calibrated the system
with samples of well-defined cell densities, checked

using a counting chamber. In the rare case of bacte-
rial infections, the vial would turn very turbid, and
we could detect the infection within a day and discard
the vial.

In the course of this work, it was discovered that an
apparent change in the manufacture (by following lot
numbers) of the vial cap liners resulted in a significant
increase in the doubling times. This problem which
did not affect the data presented here was cured by
rinsing with 65% isopropyl alcohol and drying.

4.5. Automated continuous counting method
To obtain more accurate measurements in an auto-
mated and continuous way, we developed our own
cell density measurement method centered around
an OCPC setup (figure 8). In this approach one
counts cells in a sampling volume by registering
them as flashes of light that pass across a single ele-
ment detector. Our design involved a green laser
diode source—focused with a low-power objective
lens—positioned to shine through the center of a con-
tinuously stirred 10 ml culture in a 0.75 inch diam-
eter sample cell made from a cut test tube capped
with a rubber septum. A magnetic stir bar at the bot-
tom of the chamber was driven by a permanent mag-
net rotated at 151 rpm (as in our shaker cultures)
by a stepping motor. We positioned a light detector
downstream from the laser with a lens that imaged
in a direction 40 degrees from the forward direc-
tion with roughly 0.7× demagnification of a por-
tion of the illuminated sample region on the detec-
tor. The photodiode detector had a 5.1 mm2 active
area. A green filter blocked orange fluorescence pro-
duced by the culture media. This allowed us to cap-
ture a range of cell counts from the lowest densities,
through the slow–fast transition, and well into the
exponential proliferation regime. We covered these
components with a light-shielding box to minimize
unwanted noise from room lights.

To count light flashes accurately, we employed a
computer running the remarkable pulse height anal-
ysis program PRA which was originally intended for
gamma ray spectroscopy with energy sensitive detec-
tors [29]. We developed the technique by running the
experiment with suspensions of 10 micron-diameter
colloidal particles, aimed to mimic cells in shape and
size. Employing PRA’s ‘shape tolerance method’, we
found an approximate pulse time profile correspond-
ing to a cell which the PRA program could discern
from noise.

With an appropriate pulse profile, we could run
the experiment on filtered (0.25 micron) media with-
out cells and subtract the resulting pulse height spec-
trum from that produced by a run with cells to
obtain a background-subtracted result. We found
that attempting this with the wrong selected pulse
width would lead to non-meaningful spectra with
negative net ‘counts’. We repeated these subtrac-
tions with manually adjusted pulse width ranges until
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Figure 7. Turbidity point experiment setup. (a) A sketch of the velocity pattern in viscosity-dominated flow (see detailed
discussion in section 4.6) in produced in each vial by the rotating drum for rotation speeds between 16 and 64 rpm. (b) A
schematic of the stepper motor running the drum with many vials simultaneously.

Figure 8. OCPC apparatus. Schematic (not to scale) diagram showing important components and signal processing chain of our
automated cell counting system for observing a stirred suspension culture. Details discussed in section 4.5.

we obtained strongly positive, biologically meaning-
ful results. Scrupulous attention was paid to stray
sources of dust that would introduce extraneous par-
ticle counts [30].

Using these optimization methods, we trained the
PRA program to identify cells as efficiently as possible.
Our colloid particle detection efficiency exceeds our
cell counting efficiency by a factor of 32.

This result allowed us to record the cell density of
the culture at ten minute intervals within our density
range of interest. As seen in figure 1(f), at approxi-
mately 105 cells ml−1 —the light detector would fail to
discretize individual light pulses and a form of ‘pileup’
would occur wherein cell densities were underesti-
mated. To ensure the accuracy of the OCPC approach
before the culture reached this density, we compared
density measurements done with the OCPC system
with those done by manual cell counting (at specific

densities between 102 and 3 × 104 cells ml−1) to form
a comparative standard curve. From this, we obtained
an expected linear relationship, showing agreement
between the measurement methods.

We ran the OCPC experiment separately with
eleven cultures in 10 ml volumes in cut test-
tubes starting with densities of 102 cells ml−1 in
syringe-filtered HL5. From these runs, we subtracted
the spectrum obtained by running a culture media
without cells. The combined subtracted spectra, com-
piled using a custom code in R, provided our high
precision proliferation time series results given in
figure 1(f).

4.6. Variable stir rate experiments
To examine the possible relationship between cell pro-
liferation rates and cell collision rates, we employed
the turbidity point measurement method (figure 7,
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section 4.4) again, but varied the stir rate. The rela-
tionship used between collision rate and stir rate is
detailed in reference [15]. We ran this experiment
three times with 77 vials, stirring them at 16 rpm, 32
rpm, and 64 rpm. We estimate the Reynolds number
(Re), the ratio of inertial to viscous forces [31] from
the expression Re = L U

υ
where L is the characteristic

length which we take to be 0.6 mm, half the depth of
the fluid in the vial, U is the characteristic fluid veloc-
ity which we take to be the vial radius (0.5 cm) times
the angular rotation speed and υ is the kinetic viscos-
ity of the system, which we take to be that of water. In
this manner, we established that we were using Re in
the range of from 5 to 20, and hence is well described
as viscosity dominated flow [31]. This is in contrast
to our 150 rpm orbital shaker system (section 4.2)
where we expect the characteristic length to be sev-
eral cm and hence at least two orders of magnitude
higher in Re, thereby introducing unstable flow (p 25
of reference [31]). In summary by relying on viscous
flow our rotating vial system provides proper con-
trol of the shear rate and therefore also the cell–cell
collision rate, as required.

4.7. Conditioned media experiments
Unlike in our original experiments [15], detailed in SI
section 5, where we used syringe filtering to remove
cells, our present work made use of centrifugation.
We verified by counting that cells had been removed
down to a level of 40–80 cells ml−1. Because of
this uncertainty, we started with initial densities of
500 cells ml−1.

With attention to conditioning the media for long
periods of time we prepared CM from cells at three
different densities: 2 × 103 cells ml−1 (below the
slow-to-fast transition), 3 × 105 cells ml−1, and
5 × 105 cells ml−1 (both above the slow-to-fast
transition). The cells at 2 × 103 cells ml−1 den-
sity were obtained by culturing a 103 cells ml−1

sample in a fresh HL5 medium for 22 h. We
obtained the latter 3 × 105 cells ml−1 and 5
× 105 cells ml−1 cultures by starting a cell cul-
ture at 104 cells ml−1 and growing them for
72 h. As always we grew samples on a 150 rpm orbital
shaker.

4.8. Cluster decay rate measurements
To examine the rates of cluster decay, we transferred
samples from suspension cultures onto Petri dishes
with cover slip substrates (Part No. P50G-1.5-14-F,
MatTek Corporation, Ashland, MA)—covered with
mineral oil or hermetically sealed to prevent evapo-
ration. We then observed with digital video as in ref-
erences [19, 25] over hours with an inverted micro-
scope using an ImageJ digital vision program. Cells
shedding from clusters were scored from time series
by eye watching recordings in order to estimate the
decay rate. In applying this estimate of cluster decay

rate in suspension culture, we are making two approx-
imations: the observations were on surfaces, not
in suspension and the attraction of cells for the
hydrophilic substrate that might lead to enhanced
declustering (note figure 4 of reference [15]) was not
considered.
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